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Abstract

We formulate a Multi-Element generalized Polynomial Chaos (ME-gPC) method to
deal with long-term integration and discontinuities in stochastic differential equa-
tions. We first present this method for Legendre-chaos corresponding to uniform
random inputs, and subsequently we generalize it to other random inputs. The
main idea of ME-gPC is to decompose the space of random inputs when the rela-
tive error in variance becomes greater than a threshold value. In each subdomain
or random element, we then employ a generalized Polynomial Chaos expansion. We
develop a criterion to perform such a decomposition adaptively, and demonstrate
its effectiveness for ODEs, including the Kraichnan-Orszag three-mode problem, as
well as advection-diffusion problems. The new method is similar to spectral element
method for deterministic problems but with h-p discretization of the random space.
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1 Introduction

Polynomial chaos is a non-statistical approach to represent randomness and
is based on the homogeneous chaos theory of Wiener [1]. In its original form
a spectral expansion was employed based on the Hermite orthogonal polyno-
mials in terms of Gaussian random variables. This expansion was applied by
Ghanem and co-workers to various problems in mechanics [2,3]. A broader
framework, called “generalized Polynomial Chaos (gPC)”, was introduced in
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[4,5]. This extension includes a family of orthogonal polynomials (the so-called
Askey scheme) from which the trial basis is selected, and can represent non-
Gaussian processes more efficiently; it includes the classical Hermite polyno-
mial chaos as a subset. For example, uniform distributions are represented by
Legendre polynomial functionals, exponential distributions by Laguerre poly-
nomial functionals, etc. The method includes also discrete distributions with
corresponding discrete eigenfunctions as trial basis; e.g., Poisson distributions
are represented by Charlier polynomial functionals.

More specifically, stochastic ordinary differential equations (ODEs) were con-
sidered in [4] and gPC was shown to exhibit exponential convergence in ap-
proximating stochastic solutions at finite (early) times. However, the absolute
error may increase gradually in time and become unacceptably large for long-
term integration. Increasing the polynomial order adaptively can somewhat
alleviate this problem, however, the stochastic solution may become increas-
ingly complicated, which may give rise to serious computational difficulties.
For example, if the stochastic solutions are periodic with random frequencies,
gPC will lose its effectiveness rapidly due to the amplified phase shift with
time. The same is true for time-dependent simulations of fluid flows, which
are the problems considered in [5]. In addition, for discontinuous dependence
of the solution on the input random data, gPC may converge slowly or fail to
converge even in short-time integration. This situation represents essentially a
discontinuity of the approximated solution in random space, for which global
solutions converge slowly. Therefore, more efficient and robust schemes are
needed to enhance the performance of generalized as well as the original poly-
nomial chaos. To this end, a new method, termed the Wiener-Haar method,
was developed in [6,7] based on wavelets; its primary aim was to address prob-
lems related to the aforementioned discontinuities in random space.

In this paper, we develop a simple but effective scheme based on gPC, i.e., we
maintain a spectral polynomial trial basis. It is motivated by two observations:

(1) gPC is more efficient for relatively small degree of random perturbation,
and

(2) most of the statistics we are interested in, such as mean and variance, are
defined as integrations involving the probability density function (PDF).

To this end, we decompose the space of random inputs into small elements.
Subsequently, in each element we generate a new random variable and apply
gPC again. Since the degree of perturbation in each element is reduced pro-
portionally to the size of random elements, we can maintain a relative low
polynomial order for gPC in each element. This multi-element gPC method
(ME-gPC) can achieve h-p convergence (as in spectral elements for spatial
discretization), where h is determined by the size of random elements and p is
the polynomial chaos order. The concept of h-convergence used in this work is
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similar to that in [8], where the basis of the standard finite element method is
employed. In ME-gPC, orthogonal basis (Legendre-chaos) is used in each ran-
dom element for efficiency. By extension, we can say that in [6,7] the concept of
h-convergence is also used with h representing the number of resolution levels
of wavelets. From the implementation standpoint, the simplicity of ME-gPC
is particularly attractive; for example, we do not have to change the existing
gPC solver except for a subroutine for the decomposition of random space.
As we shall see in this paper, however, the results are dramatically improved
compared to global gPC expansions.

This paper is organized in the following way. In the next section, we recall
the basic concepts and properties of gPC. Then, we introduce the ME-gPC
algorithm and the criterion of the decomposition of random space in section 3.
In section 4, we study the properties of ME-gPC numerically for several typical
ODE and PDE problems, including the open Kraichnan-Orszag three-mode
problem. A summary is included in section 5.

2 Generalized Polynomial Chaos

The original polynomial chaos formulation was proposed by N. Wiener [1].
It employs Hermite polynomials in terms of Gaussian random variables as
the trial basis to represent stochastic processes. According to the theorem of
Cameron and Martin [9] such expansions converge for any second-order pro-
cesses in the L2 sense. The gPC extension was proposed in [5] and employs
more types of orthogonal polynomials from the Askey scheme. It is a general-
ization of the Wiener’s Hermite-chaos and can deal with non-Gaussian random
inputs more efficiently.

Let (Ω,F , P ) be a complete probability space, where Ω is the sample space,
F is the σ-algebra of subsets of Ω, and P is a probability measure. A general
second-order random process X(ω) ∈ L2(Ω,F , P ) can be expressed by gPC as

X(ω) =
∞∑

i=0

âiΦi(ξ(ω)), (1)

where ω is the random event and Φi(ξ(ω)) are polynomial functionals of degree
p in terms of the multi-dimensional random variable ξ = (ξ1, . . . , ξd). The
family {Φi} is an orthogonal basis in L2(Ω,F , P ) with orthogonality relation

〈Φi, Φj〉 = 〈Φ2
i 〉δij , (2)

where δij is the Kronecker delta, and 〈·, ·〉 denote the ensemble average. Here,
the ensemble average can be defined as the inner product in the Hilbert space
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in terms of the random vector ξ

〈f(ξ), g(ξ)〉 =
∫

f(ξ)g(ξ)w(ξ)dξ (3)

or
〈f(ξ), g(ξ)〉 =

∑

ξ

f(ξ)g(ξ)w(ξ) (4)

in the discrete case, where w(ξ) denotes the weight function.

For a certain random vector ξ, the gPC basis {Φi} can be selected in such a
way that its weight function has the same form as the probability distribution
function of ξ. The corresponding type of polynomials {Φi} and their associated
random variable ξ can be found in [4].

3 Multi-Element generalized Polynomial Chaos (ME-gPC)

In this section, we develop the scheme of ME-gPC to maintain the high accu-
racy of gPC for long-term integration and to resolve effectively discontinuities
in random space.

3.1 Decomposition of Random Space

Let ξ = (ξ1(ω), ξ2(ω), · · · , ξd(ω)) : Ω 7→ R
d denote a d-dimensional random

vector defined on the probability space (Ω,F , P ), where ξi are identical inde-
pendent distributed (IID) random variables. Here we assume that ξi are also
uniform random variables defined as ξi : Ω 7→ [−1, 1] with a constant PDF
fi = 1

2
.

Let D be a decomposition of B with N non-overlapping elements

D =






Bk = [ak
1, b

k
1) × [ak

2, b
k
2) × · · · × [ak

d, b
k
d],

B =
⋃N

k Bk,

Bk1

⋂
Bk2

= ∅, if k1 6= k2,

(5)

where k, k1, k2 = 1, 2, · · · , N . We define an indicator random variable for each
random element as

zk =





1 if ξ ∈ Bk,

0 otherwise.
(6)

It is easy to see that Ω = ∪N
k=1z

−1
k (1) and z−1

i (1) ∩ z−1
j (1) = ∅ when i 6= j.

Thus, ∪N
k=1z

−1
k (1) is a decomposition of the sample space Ω. Then, in each
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random element we define the following local random vector as

ζk = (ζk
1 , ζk

2 , · · · , ζk
d ) : z−1

k (1) 7→ Bk (7)

subject to a conditional PDF

fζk =
1

2d Pr(zk = 1)
, k = 1, 2, · · · , N, (8)

where

Pr(zk = 1) =
d∏

i=1

bk
i − ak

i

2
. (9)

Note that Pr(zk = 1) > 0. Subsequently, we map ζk to a new random vector
defined in [−1, 1]d

ξk = gk(ζ
k) =

(
ξk
1 , ξk

2 , · · · , ξk
d

)
: z−1

k (1) 7→ [−1, 1]d (10)

with a constant PDF fk = (1
2
)d, where

gk(ζ
k) : ζk

i =
bk
i − ak

i

2
ξk
i +

bk
i + ak

i

2
, i = 1, 2, · · · , d. (11)

To this end, we present a decomposition of the random space of ξ. Given a
system of differential equations with random inputs ξ, the output u(ξ) is also
measurable on the probability space (Ω,F , P ). Thus, we can express u(ξ) in
each random element using ζk subject to a conditional PDF, which implies
that we can first approximate u(ξ) locally by ζk on the probability space
(z−1

k (1),F ∩ z−1
k (1), P (·|z−1

k (1))), then combine all the information from each
random element to get u(ξ) in the whole random space. Since most of the
statistics are integrations with respect to the PDF, we do not have to guarantee
the absolute continuity in terms of ξ between random elements. In other words,
the following restriction

uB1
(ξ) = uB2

(ξ), ξ ∈ B̄1 ∩ B̄2, (12)

where B̄1 and B̄2 indicate the closure of two adjacent random elements, re-
spectively, is not required as in the deterministic problems since the measure
of the interface is zero. Thus, in random element k we can use gPC locally
to solve the system of differential equations with random inputs ζk instead of
ξ. According to the theorem of Cameron and Martin [9], gPC will converge
to u(ζk) in the L2 sense. Hence, we decompose the original problem to N
independent problems in N random elements.

In practice we implement gPC according to ξk instead of ζk to take ad-
vantage of the Legendre-chaos. After we obtain the approximation ûk(ξ

k),
k = 1, 2, · · · , N , of a random field, we can reconstruct the m-th moment of
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u(ξ) on the entire random domain by the Bayes’ theorem and the law of total
probability [10]

µm (u(ξ)) =
∫

B
um(ξ)(

1

2
)ddξ ≈

N∑

k=1

Pr(zk = 1)
∫

[−1,1]d
ûm

k (ξk)(
1

2
)ddξk (13)

Since we consider second-order processes in this work, m = 1, 2. For conve-
nience, we use Jk to denote Pr(zk = 1) in the presentation below.

3.2 Accuracy

Theorem 1 Suppose ξ is a random vector defined on [−1, 1]d with IID uni-
form components. If the random space of ξ is decomposed into N disjoint
elements with each element k described by a new uniform random vector ξk

(see equation (10)), the m-th (m = 1, 2) moment of random field u(ξ) ∈
L2(Ω,F , P ) can be approximated by ûk(ξ

k), k = 1, 2, · · · , N , with a L2 error

ǫ =

(
N∑

k=1

ǫ2
kJk

) 1

2

, (14)

where ǫk is the local L2 error of the m-th moment in random element k,
Jk = Pr(zk = 1) and ûk(ξ

k) is obtained from gPC.

PROOF. Let û(ξ) be the approximate random field. We first assume that
the m-th moment of û(ξ) takes the form

ûm(ξ) =
N∑

k=1

ûm
k (gk(ξ))zk, (15)

since B = ∪N
i=1Bi, ζi ∈ Bi and ξ ∈ B (see equation (7) and (11)). Then,

ǫ2 =
∫

B

(
um(ξ) −

N∑

k=1

ûm
k (gk (ξ)) zk

)2

(
1

2
)ddξ

=
N∑

k=1

Pr(ξ ∈ Bk)
∫

Bk

(
um(ζk) − ûm

k (gk(ζ
k))
)2

fζk
dζk

=
N∑

k=1

Pr(ξ ∈ Bk)
∫

[−1,1]d

(
um(g−1

k (ξk)) − ûm
k (ξk)

)2
(
1

2
)ddξk

=
N∑

k=1

ǫ2
kJk.
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For the second step, we employ the Bayes’ theorem and the law of total prob-
ability [10]. If gPC is employed to approximate u(g−1

k (ξk)), ǫk goes to zero ac-
cording to the theorem given by Cameron and Martin [9]. Since

∑N
k=1 Jk = 1,

ǫ also goes to zero. Note here that although we approximate the random field
locally we can rebuild the global random field by equation (15). 2

Note that
∑N

k=1 Jk = 1. Thus ǫ2 is a weighted mean of ǫ2
k, k = 1, 2, · · · , N .

From the transform (11) we can see that the degree of random perturbation

for each dimension of ξk is scaled down from O(1) to O(
bk
i
−ak

i

2
). This means

that the decomposition of random space can effectively decrease the degree of
randomness. Thus, for the same polynomial order any ǫk would be smaller than
the error given by gPC on the entire random space without the decomposition
of random space.

In [8] error estimates were derived for the mean and the variance for a sim-
ilar decomposition of random space in the framework of deterministic finite
element method, as follows

|ū − ¯̂u| ≤ C1(p)O(h2(p+1)), |σ2 − σ̂2| ≤ C2(p)O(h2(p+1)), (16)

where the element size h ∝ N−1 in our case and p is the polynomial order. In
[8], the same basis as the deterministic finite element is employed to approxi-
mate the random field, where the accuracy mainly relies on the decomposition
of random space. In ME-gPC, we employ Legendre-chaos locally to take ad-
vantage of orthogonality and related efficiencies.

Let us now return to the two specific problem we aim to address in this paper:
discontinuity and long-term integration. If a discontinuity exists in random
space, then gPC may converge very slowly or give rise to O(1) error. However,
ME-gPC can overcome this difficulty. Let us assume that the discontinuity
occurs in the random element k. From equation (14) we can see that the error
contribution of element k is (ǫ2

kJk)
1/2, which is determined by the local approx-

imation error in element k and the factor Jk together. So the error contribution
can be decreased by the factor Jk (dictated by the element size) even if the
local approximation error is big. Thus, we can maintain a high accuracy on the
entire random domain by using bigger elements for the smooth part (p-type
convergence) and smaller elements for the discontinuous part (h-type conver-
gence). To control the error in long-term integration problems, one choice is
to increase the polynomial order adaptively. However, the stochastic system
will become bigger, which may lead to a complicated system of deterministic
differential equations with all stochastic modes coupled together, especially
in problems with high-order nonlinearity. In ME-gPC, we can use a relative
low polynomial order in each random element since the local degree of per-
turbation has been scaled down; thus, the complexity is effectively controlled.
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In practice, the polynomial order cannot be increased arbitrarily high, which
means that the range of application of gPC is indeed limited. It is obvious
that such a range can be effectively extended by the decomposition of random
space.

3.3 Adaptive Criterion

Let us assume that the gPC expansion of random field in element k is

ûk(ξ
k) =

Np∑

i=0

ûk,iΦi(ξ
k), (17)

where p is the highest order of polynomial chaos and Np denotes the total
number of basis modes given by

Np =
(p + d)!

p!d!
− 1. (18)

The approximate global mean can be expressed as

ū =
N∑

k=1

ûk,0Jk. (19)

From the orthogonality of gPC we can obtain the local variance approximated
by polynomial chaos with order p

σ2
k,p =

Np∑

i=1

û2
k,i

〈
Φ2

i

〉
, (20)

and the approximate global variance

σ̄2 =
N∑

k=1

[
σ2

k,p + (ûk,0 − ū)2
]
Jk. (21)

Let γk be the error of the term σ2
k,p + (ûk,0 − ū)2. We obtain the exact global

variance as

σ2 = σ̄2 +
N∑

k=1

γkJk, . (22)

We define the local decay rate of relative error of the gPC approximation in
each element as follows

ηk =

∑Np

i=Np−1+1 û2
k,i 〈Φ

2
i 〉

σ2
k,p

. (23)
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For h-type refinement, we consider two factors: the decay rate of the relative
error ηk in each element and the factor Jk. We will split a random element
into two equal parts when the following condition is satisfied

ηα
k Jk ≥ θ1, 0 < α < 1, (24)

where α is a prescribed constant.

When the random elements become smaller, (i.e., Jk becomes smaller), the
value of ηk satisfying the criterion will be bigger. Thus, the criterion relaxes
the restriction on the accuracy of the local variance for smaller elements since
the error contribution of small random elements will be dictated by their size.
From equation (22) we can see that to achieve a certain level of accuracy,
say β, we need

∑N
k=1 γkJk/σ

2 ∼ O(β). However, it is difficult to estimate
such a global error since it is related to both h-type convergence and p-type
convergence. By noting the hierarchical structure of orthogonal polynomial
chaos basis, we replace γk/σ

2 with ηk and use ηkJk as an indicator of the error
contribution of each element in this work.

There are two reasons to use the power of ηk with respect to α in the criterion:

(1) The decomposition of random space would terminate when Jk ∼ θ1. From
the criterion, we can see that ηk must satisfy ηk ≥ (θ1/Jk)

1/α to trigger
the decomposition of random space. If Jk < θ1, ηk must be greater than
1 and increase quickly as Jk becomes smaller further by noting that both
θ1/Jk and 1/α are greater than 1. It is, in general, hard to reach such a
large ηk in practice, even for problems involving stochastic discontinuities.
Thus, θ1 acts as a limit of the size of random elements. In this paper, we
usually set α to be 1/2.

(2) In stochastic discontinuity problems the largest error contribution is ηkJk ∼
O(Jk) ∼ O(θ1) because the relative error ηk could be almost O(1) in the
elements containing discontinuities. For such a case, we have to keep the
error contribution of O(θ1) because it is the best that gPC can do; how-
ever, we can eliminate the error contribution of random elements with-
out discontinuities. Note that ηkJk ∼ O(η1−α

k θ1), where θ1 is weighted by
η1−α

k . Thus, in random elements without discontinuities the error contri-
bution will be much smaller than θ1 since ηk < 1 in these elements. Fi-
nally, the total error contribution

∑N
k=1 ηkJk would be O(mJk) ∼ O(mθ1),

where m is the number of random elements with O(θ1) error contribu-
tion. So, η1−α

k works as a filter and θ1 also acts as an accuracy threshold
besides the aforementioned limit of element size.

Furthermore, we use another threshold parameter θ2 to choose the most sen-
sitive random dimension. We define the sensitivity of each random dimension

9



as

ri =
(ûi,p)

2
〈
Φ2

i,p

〉

∑Np

j=Np−1+1 û2
j

〈
Φ2

j

〉 , i = 1, 2, · · · , d (25)

where we drop the subscript k for clarity and the subscript ·i,p denotes the
mode consisting only of random dimension ξi with polynomial order p. All
random dimensions which satisfy

ri ≥ θ2 · max
j=1,··· ,d

rj, 0 < θ2 < 1, i = 1, 2, · · · , d (26)

will be split into two equal random elements in the next time step while
all other random dimensions will remain unchanged. Hence, we can reduce
the total element number while gaining efficiency. Considering that h-type
refinement is efficient in practice, we only present results given by h-type
refinement in this work. For some cases, say stochastic discontinuity problems,
h-type refinement may be the most effective choice since p-type convergence
may not be maintained anymore. This is, of course, not surprising given what
we know for deterministic problems [11].

3.4 Numerical Implementation

When h-type refinement is needed, we have to map the random field from one
mesh of elements to a new mesh of elements. Suppose that the gPC expansion
of the current random field is

û(ξ̂) =
NP∑

i=0

ûiΦi(ξ̂), (27)

then we assume that the gPC expansion in the next level takes the following
form

ũ(ξ̃) = ũ
(
g
(
ξ̂
))

=
Np∑

i=0

ũiΦi(ξ̃), (28)

where ξ̃ ∈ [−1, 1]d. To determine the (Np+1) coefficients ũi, we choose (Np+1)

points ξ̃i, i = 0, 1, · · · , Np, which are the uniform grid points in [−1, 1]d and
solve the following linear system




Φ00 Φ10 · · · ΦNp0

Φ01 Φ11 · · · ΦNp1

...
...

...
...

Φ0Np
Φ1Np

· · · ΦNpNp







ũ0

ũ1

...

ũp




=




∑Np

i=0 ûiΦi

(
g−1

(
ξ̃0

))

∑Np

i=0 ûiΦi

(
g−1

(
ξ̃1

))

...
∑Np

i=0 ûiΦi

(
g−1

(
ξ̃Np

))




(29)
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where Φij = Φi

(
ξ̃j

)
. We rewrite the above equation in matrix form as

Aũ = û. (30)

Due to the hierarchical structure of the basis, A−1 exists for any (Np + 1)
distinct points in [−1, 1]d. When h-type refinement is implemented we divide
the random space of a certain random dimension ξ̂i into two equal parts. For
example, if ξ̂i corresponds to element [â, b̂] in the original random space [−1, 1],

the elements [â, â+b̂
2

] and [ â+b̂
2

, b̂] will be generated in the next level. However,
due to the linearity of transformation, we do not have to perform such a map
from the original random space, as we can just separate the random space of
ξ̂i, which is [−1, 1], to [−1, 0] and [0, 1]. Therefore, the matrix A will be the
same for every h-type refinement, and we only need to compute A−1 once and
store it for future use. When refinement is needed, we can obtain ũ easily by
a matrix-vector multiplication

ũ = A−1û. (31)

For a relatively small polynomial order (p ≤ 10), the mapping cost is small.

Now we summarize the ME-gPC algorithm.

Algorithm 1
-Step 1: construct a stochastic ODE/PDE system by gPC
-Step 2: perform the decomposition of random space adaptively
- time step i: from 1 to N
- loop over all random elements
- if ηαJk ≥ θ1, then
- if rn ≥ θ2 · maxj=1,··· ,d rj, then
- split random dimension ξn into two equal ones and generate
- local random variables ξn,1 and ξn,2

- end if
- end if
- map information to the children random elements
- update the information of new elements by gPC
- end loop
- end time step
-Step 3: postprocessing stage

3.5 Generalization

Let ζ be a general (i.e., non-uniform) random vector, whose components are
IID random variables. Let ζ denote any component of ζ. We can approximate

11



it by Legendre-chaos in the form

ζ =
Np∑

i=0

aiΦi(ξ), (32)

where ξ is a uniform random variable. The procedure for such an approxi-
mation can be found in [4]. Note here that we need d IID uniform random
variables to approximate all components of ζ. By expressing everything in
terms of the Legendre-chaos, then we can employ ME-gPC in terms of ξ.

Another choice is to first decompose the random space of ζ . Assume that u(ζ)
is a random field of ζ , then the m-th moment of u(ζ) is

µm(u) =
∫

B
um(ζ)h(ζ)dζ, (33)

where h(ζ) is the PDF. Suppose that we have decomposed the random space
of ζ to elements Bi, i = 1, 2, · · · , N . The above equation can be rewritten as

µm(u) =
N∑

i=1

∫

Bi

viu
m(ζ)

h(ζ)

vi
dζ, (34)

where vi =
∫
Bi

h(ζ)dζ . We can then express h(ζ)
vi

as a conditional PDF of ζ in
Bi

h̄(ζ |Bi) =
h(ζ)

vi
. (35)

Then, the m-th moment of u(ζ) can be expressed in the following form

µm(u) =
N∑

i=1

vi

∫

Bi

um(ζ)h̄(ζ |Bi)dζ. (36)

Now we can employ the first choice to approximate the conditional PDF
h̄(ζ |Bi) by uniform random variables ξ. Since we approximate h̄(ζ |Bi) only
in a subspace of ζ , we may use a smaller number of Legendre-chaos modes for
a desired level of accuracy.

Finally, another choice is to construct orthogonal polynomials on-the-fly for
arbitrary PDFs. This construction is under development (see [12]).

4 Numerical Results

In this section, we first demonstrate the convergence of ME-gPC for an al-
gebraic equation and a simple ODE. Next, we focus on issues related to dis-
continuities in random space and study the Kraichnan-Orszag problem. Sub-
sequently, we present numerical results for the stochastic advection-diffusion

12



equation. Finally, we demonstrate the h-type convergence of the decomposi-
tion of random space for the approximation of general random inputs.

4.1 A Simple Algebraic Equation

We first revisit the following stochastic algebraic equation considered in [8]

c u = 1, (37)

where c is a positive uniform random variable in [a, b].

In Fig. 1, the h-type convergence is shown, with the mean on the left and
variance on the right. Here we set a = 2 and b = 3. By a least-squares fit of
the data, we obtain that the index of algebraic convergence is 2(p+1) for both
the mean and the variance, which is consistent with the theoretical estimates
given in [8].
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Fig. 1. h-type convergence for the algebraic equation. Left: Mean; Right: Variance.

4.2 One-Dimensional ODE

In this section we study the performance of ME-gPC for the following simple
ODE equation studied with the original gPC in [4]

du

dt
= −κ(ω)u, u(0; ω) = u0, (38)

where κ(ω) ∼ U(−1, 1). The exact solution can be easily found as

u(t; ω) = u0e
−κ(ω)t. (39)

In Fig. 2, we show the exponential convergence of ME-gPC for different
meshes. We can see that for greater number of equidistant random elements,
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not only is the error smaller, but the rate of convergence is much sharper. We
show the algebraic convergence of ME-gPC in terms of element number N in
Fig. 3. For this problem, the algebraic index of convergence is 2(p + 1) for

both mean and variance, which means ǫ ∼ O
(
N−2(p+1)

)
. We have obtained a

large algebraic index of convergence, which implies that random elements can
influence the accuracy dramatically. In Fig. 4, the error evolution of gPC and
ME-gPC is shown for two different levels of accuracy. Because the accuracy of
exact solutions is set to be 10−10, there is some oscillation at the beginning of
the curves. It can be seen that when the error of gPC becomes big enough, θ1

can trigger the decomposition of random space and the accuracy can then be
improved significantly. In Fig. 5, we show how the number of random elements
increases adaptively. Note here that the mesh can be non-uniform, because we
only decompose the random elements in which the criterion is satisfied.
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4.3 The Kraichnan-Orszag Three-Mode Problem

It is well known that polynomial chaos fails in a short time for the so-called
Kraichnan-Orszag three-mode problem [13]. In this section we first explain
why this happens and subsequently we apply ME-gPC to effectively resolve
this fourty-year old open problem.

4.3.1 Why gPC fails

The Kraichnan-Orszag problem [13] is a nonlinear three-dimensional stochas-
tic ODE system:
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dx1

dt
=x2x3

dx2

dt
=x1x3

dx3

dt
=−2x1x2 (40)

subject to stochastic initial conditions

x1(0) = x1(0; ω), x2(0) = x2(0; ω), x3(0) = x3(0; ω). (41)

We first check the deterministic solutions of equation (40). Given different
initial conditions, deterministic solutions can be basically separated into four
different groups gi, i = 1, 2, 3, 4, which are shown in Fig 6. All these four
groups of solutions are periodic. If the initial conditions are located on the
planes x1 = x2 and x1 = −x2, the corresponding solutions would stay on

these two planes forever due to two fixed points (0, 0,
√

2x2
1(0) + x2

3(0)) and

(0, 0,−
√

2x2
1(0) + x2

3(0)). By considering the properties of elliptic functions
[14], we can obtain the analytic solutions of each group. Here we only give the
analytic form of group g1:

x1 = P cn[q(t − t0)], x2 = Qdn[q(t − t0)], x3 = −Rsn[q(t − t0)], (42)

where cn[·], sn[·] and dn[·] are Jacobi’s elliptic functions and P , Q, R, q and t0
are constants to be determined. We now substitute equation (42) into equation
(40) to obtain

Pq = QR, Qk2q = PR, Rq = 2PQ, (43)

where k is the modulus of elliptic functions. Since we have three initial condi-
tions

P cn[q(t − t0)] =x1(0; ω),

Qdn[q(t − t0)] =x2(0; ω),

−Rsn[q(t − t0)] =x3(0; ω), (44)

we have six equations with six unknowns P , Q, R, k, q and t0. Thus, we have
obtained the exact general solution of the Kraichnan-Orszag problem.

We now consider the following initial conditions

x1(0) = α + 0.01ξ, x2(0) = 1.0, x3(0) = 1.0, (45)

where ξ is a uniform random variable and α is a constant. By solving equation
(43) and (44), we can determine the unknowns as
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P 2 = f 2(ξ) +
1

2
, Q2 =

3

2
, R2 = 2f 2(ξ) + 1,

p2 =3, k2 =
2

3
f 2(ξ) +

1

3
, t0 = −dn−1[

1

Q
]/p, (46)

where f(ξ) = α + 0.01ξ.

Next we examine the Fourier expansions of Jacobi’s functions:

sn[u] =
2π

kK

[
q1/2 sin z

1 − q
+

q3/2 sin 3z

1 − q3
+

q5/2 sin 5z

1 − q5
+ · · ·

]
,

cn[u] =
2π

kK

[
q1/2 cos z

1 + q
+

q3/2 cos 3z

1 + q3
+

q5/2 cos 5z

1 + q5
+ · · ·

]
,

dn[u] =
π

2K
+

2π

K

[
q cos 2z

1 + q2
+

q2 cos 4z

1 + q4
+

q3 cos 6z

1 + q6
+ · · ·

]
, (47)

where q = q(ξ), K = K(ξ), and z = z(ξ, t). First, we can see that the frequency
depends on the random variable ξ. It is well known that this will reduce the
effectiveness of gPC as the initial phase difference will be amplified very fast
as time increases. In Fig. 7, we show how the period of x1 change as x1(0) → 1.
We can see that the period of x1 will increase to infinity as x1(0) goes to 1.
Note here that if x1(0) = 1, the initial point (1, 1, 1) would be on the plane
x1 = x2. Second, if q goes to 1, it is clear that we need more and more terms
for the expansion of sn[u], which means that the order of polynomial chaos
must increase correspondingly to resolve the solution.

From equations (45) and (46) we can see that if ξ is uniform in [−1, 1], x1

is uniform in [α − 0.01, α + 0.01] and the range (non-uniform) of k(ξ) is

[
√

2
3
(α − 0.01) + 1

3
,
√

2
3
(α + 0.01) + 1

3
]. Let kr denote the upper bound of k(ξ).

It is clear that if α → 0.99, kr → 1. By the properties of elliptic functions,
we know that q → 1 when k → 1. Thus, for the same degree of perturbation
gPC should work less efficiently when α → 0.99, because k(ξ) will be closer
to 1. Now, we investigate four simple cases: α = 0.94, 0.96, 0.98, and 0.99.
For simplicity we only show the results for x1, since the situation is similar
for x2 and x3. In Fig. 8 we show how gPC fails when α → 0.99. It can be seen
that in Fig. 8 (a)-(d) the valid range of polynomial chaos with order p = 6
becomes shorter as α increases. If α is strictly less than 0.99 corresponding to
q < 1, increasing the polynomial order can efficiently improve the results of
polynomial chaos. For the cases (a)-(c), the results of polynomial chaos with
order p = 20 agree very well with the results of Monte Carlo with 100, 000 re-
alizations. However, if α = 0.99 is included, the periods of stochastic solutions
will change from a finite value to infinity and increasing the polynomial order
hardly improves the results for this case. It is shown in (d) that the correct
part of the variance given by polynomial chaos with order p = 30 is almost
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the same with that given by polynomial chaos with order p = 6. Therefore, it
is at the bifurcation point where gPC fails to converge.

In general, if the initial random data does not intersect with the planes x1 = x2

and x1 = −x2, we can improve the results of polynomial chaos by increasing
the polynomial order, otherwise, polynomial chaos will diverge even after a
short time of integration.
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Fig. 6. Deterministic solutions of the Kraichnan-Orszag problem subject to different
initial conditions. Left: 3D phase space; Right: 2D projection on x1-x2 plane.
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4.3.2 One-Dimensional Random Input

Let us first study the random discontinuity of the Kraichnan-Orszag three-
mode problem, which is introduced by one-dimensional random input. For
computational convenience and clarity in the presentation we first perform
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Fig. 8. Comparison of variance obtained from gPC and Monte Carlo simulations.
(a): α = 0.94; (b): α = 0.96; (c): α = 0.98; (d): α = 0.99.
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As a result, we will rotate the deterministic solutions by π
4

around to x3 axis
in the phase space. Now the new system is

dy1

dt
= y1y3

dy2

dt
=−y2y3

dy3

dt
=−y2

1 + y2
2 (49)
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subject to initial conditions

y1(0) = y1(0; ω), y2(0) = y2(0; ω), y3(0) = y3(0; ω). (50)

From now on, we will study this problem based on equation (49). Note that the
discontinuity occurs at the planes y1 = 0 and y2 = 0 after the transformation.
Gaussian random variables are used as random inputs in [13]. Here, we use
uniform random variables since the discontinuity can be introduced similarly.
Thus, we study the stochastic response subject to the following random input

y1(0; ω) = 1, y2(0; ω) = 0.1ξ(ω), y3(0; ω) = 0, (51)

where ξ ∼ U(−1, 1). Since the random initial data y2(0; ω) can cross the plane
y2 = 0, we know from the aftermentioned discussion that gPC will fail for this
case.

In Fig. 9, we show the evolution of the variance of y1 within the time interval
[0, 30]. For comparison we include the results given by gPC with polynomial
order p = 30. It can be seen that comparing to the results given by Monte
Carlo with 1, 000, 000 realizations, gPC with polynomial order p = 30 begins
to lose accuracy at t ≈ 8 and fails beyond this point while ME-gPC converges
as θ1 decreases. In Table 1, we show the maximum normalized error of the
variance of y1, y2 and y3 at t = 30 given by ME-gPC and the corresponding
number of random elements. It is seen that when the threshold parameter θ1

decreases, the accuracy becomes better and we can obtain almost O(θ1) error.
As we mentioned before, the reason that errors are usually bigger than θ1

is due to the discontinuity which can reduce the convergence of gPC. It can
be seen that for the same polynomial order we need more random elements
to get a better accuracy; on the other hand, for the same θ1 increasing the
polynomial order can reduce the number of random elements.

In Fig. 10, we show four adaptive meshes. We can see that around the point
ξ = 0 in random space of ξ, where the discontinuity occurs, the random
elements are smallest, which means that the discontinuity can be captured by
small random elements. In Fig. 11, we show the errors of Monte Carlo and
ME-gPC in terms of computational cost. The error is the L∞ error of the
variance of y1 in the time interval [8, 30], where gPC fails. To implement gPC,
we need to apply Galerkin projection onto the chaos basis, resulting in the
ensemble average 〈ΦiΦjΦk〉 of three basis modes. Here, we count the operations
of 〈ΦiΦjΦk〉 for ME-gPC in order to estimate its cost. For Monte Carlo, the
number of realizations is employed in the cost evaluation. Let n denote the
number of operations. If the data in Fig. 11 are approximated by a first-order
polynomial in a least-squares sense, we can obtain accuracy proportional to
n−0.49, n−2.25, n−2.99 and n−4.24, respectively, for Monte Carlo and ME-gPC
with polynomial order p = 3, p = 4 and p = 5, respectively. The decay rate
for Monte Carlo is about n−0.5 as expected. Comparing to Monte Carlo, the
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errors of ME-gPC show a much greater decay rate in terms of the cost. We can
see that the speed-up increases for higher accuracy, which implies that ME-
gPC is an efficient alternative to Monte Carlo for integration where high-order
accuracy is required. In Fig. 12, we show the error contribution of each random
element. Here we compare two criteria with α = 1

2
and α = 1

4
. It is seen that

the shape of error distribution is like an isosceles triangle, i.e., a “Gibbs-like”
behavior. On the apex of the triangle is the largest error contribution, where
discontinuity occurs. The error contribution decreases quickly away from the
discontinuity, since ηkJk ∼ η1−α

k θ1 and ηk is much smaller on the smooth part.
Because gPC loses accuracy as time increases, the error contribution of each
element will become larger with time and more random elements with relative
errors of O(1) would appear around the discontinuity point. For a smaller α,
the error contribution near the discontinuity decreases much faster.
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Fig. 9. Evolution of the variance of y1 for one-dimensional random input.

Table 1
Maximum normalized errors of the variance of y1, y2 and y3 at t = 30 with α = 1/2.
(The results given by ME-gPC with θ1 = 10−7 and polynomial order p = 5 are used
as exact solutions.).

θ1 = 10−2 θ1 = 10−3 θ1 = 10−4 θ1 = 10−5

N Error N Error N Error N Error

p = 3 46 3.10e-2 106 2.32e-3 280 1.37e-4 820 2.87e-5

p = 4 36 9.90e-2 74 3.24e-3 138 3.45e-4 286 2.31e-5

p = 5 28 7.24e-2 44 4.10e-3 78 2.90e-4 130 4.35e-6
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Fig. 10. Adaptive meshes for the 1D random input with α = 1/2. (a): θ1 = 0.01,
p = 3; (b): θ1 = 0.001, p = 3; (c): θ1 = 0.0001, p = 3; (d): θ1 = 0.0001, p = 5.

4.3.3 Two-Dimensional Random Input

In this section we use ME-gPC to study the Kraichnan-Orszag problem with
two-dimensional random input

y1(0; ω) = 1, y2(0; ω) = 0.1ξ1(ω), y3(0; ω) = ξ2(ω), (52)

where ξ1 and ξ2 are uniform random variables with unit standard deviation.

In Fig. 13, we show the evolution of the variance of y1, y2 and y3 and an
adaptive two-dimensional mesh. For comparison we include the result given by
gPC with polynomial order p = 10. It can be seen that gPC with polynomial
order p = 10 begins to diverge around t ≈ 4 while ME-gPC with p = 5
Legendre-chaos shows good convergence to the results given by Monte Carlo
with 1, 000, 000 realizations. From the final refined mesh, we can see that the
results are more sensitive to ξ1, because ξ1 can cross the plane y2 = 0 where the
discontinuity occurs. Note here that the discontinuity domain is a line. In Fig.
14, we show the error of Monte Carlo and ME-gPC in terms of computational
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cost. Here we regard the results given by ME-gPC with θ1 = 10−6 and p = 5
as exact solutions. From the empirical fit we obtain an accuracy proportional
to n−0.50, n−1.72 and n−2.56, respectively, for Monte Carlo and ME-gPC with
p = 3 and p = 5. It is seen that ME-gPC is much faster than Monte Carlo
for higher accuracy. Comparing to the 1D case, however, the decay rate of
relative error becomes smaller because both the random dimension and the
discontinuity domain become larger.

4.3.4 Three-Dimensional Random Input

In this section we use ME-gPC to study the Kraichnan-Orszag problem with
three-dimensional random input

y1(0) = ξ1(ω), y2(0) = ξ2(ω), y3(0) = ξ3(ω), (53)

where ξ1, ξ2 and ξ3 are uniform random variables with unit standard deviation.

In Fig. 15, we show the evolution of variance. Due to the symmetry of y1 and
y2 in equation (49) and the symmetry of y1(0) and y2(0) in the random inputs,
the variances of y1 and y2 are the same. Here we only show the results for y1

and y3. It can be seen that gPC diverges around t ≈ 1 and fails subsequently
while ME-gPC shows good convergence as before. For this case, the random
space [−1, 1]3 of random inputs contains both y1 = 0 and y2 = 0 where
discontinuities occur. Comparing to the case with 2D random inputs, the
discontinuity domain is much larger. Thus, it is more difficult to resolve the
3D case. Based on the results given by ME-gPC with polynomial order 3 and
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Fig. 12. Error contribution of each random element given by two criteria with dif-
ferent α. θ1 = 10−4 and p = 5. (a): α = 1/2, t = 50; (b): α = 1/2, t = 100; (c):
α = 1/4, t = 50; (d): α = 1/4, t = 100.

θ1 = 10−5, the L∞ errors of the variance of y1 in the time interval [1.5, 6] are
0.16% and 0.21%, respectively, for Monte Carlo with 1, 000, 000 realizations
and ME-gPC with polynomial order p = 3 and θ1 = 10−3. Thus, these two
errors are comparable. For this case, the speed-up of ME-gPC is much lower
compared to the 2D problem. From the previous results, we know that this
speed-up would increase for higher accuracy, but the increasing speed would be
lower comparing to the 1D and 2D cases. In Fig. 16, we show the evolution of
the random elements generated. It can be seen that to maintain the accuracy,
the element number has to increase at a speed about 100 elements per time
unit.

In summary, ME-gPC shows good convergence when solving the Kraichnan-
Orszag problem and it can achieve a desired accuracy at a cost much lower
than Monte Carlo. However, ME-gPC loses efficiency for problems with strong
discontinuity and high-dimensional random inputs, because the number of
random elements has to increase fast to maintain a desired accuracy.
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Fig. 13. The Kraichnan-Orszag problem with 2D random inputs. α = 1/2,
θ1 = 0.1, 0.01, 0.001 and θ2 = 0.1. (a): σ2

y1
; (b): σ2

y2
; (c): σ2

y3
; (d): adaptive mesh for

θ1 = 0.001 and p = 5.

4.4 Stochastic Advection-Diffusion Equation

In this section we consider the 2D stochastic advection-diffusion equation first
studied in [15] using gPC

∂φ

∂t
(x, t; ω) + u(x; ω) · ∇φ = ν∇2φ (54)

where u(x; ω) = (y + a(ω),−x − b(ω)). For the initial condition

φ(x, 0; ω) = e−[(x−x0)2+(y−y0)2]/2λ2

, (55)

the corresponding exact solution can be found as

φe(x, t; ω) =
λ2

λ2 + 2νt
e−(x̂2+ŷ2)/2(λ2+2νt), (56)
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where λ is a constant and






x̂ = x + b(ω) − (x0 + b(ω)) cos t − (y0 + a(ω)) sin t,

ŷ = y + a(ω) + (x0 + b(ω)) sin t − (y0 + a(ω)) cos t.

Here we let a(ω) = b(ω) = 0.1ξ, where ξ ∼ U(−1, 1). In Fig. 17, we show
the convergence of ME-gPC with equidistant elements, p-type convergence on
the left and h-type convergence on the right. We can see that ME-gPC not
only exhibits exponential converge but shows an increasing convergence rate
as the number of elements increases. For h-type convergence, we only show
the results of up to four random elements, since the error decreases quickly.
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It is seen that the index of algebraic convergence is related to the polynomial
order, where the decay rate corresponding to higher polynomial order is very
large. More experiments are required to estimate the exact convergence rate
numerically.
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4.5 Approximation of a Beta-type Random Variable by Legendre-Chaos

Finally, we demonstrate how to generalize ME-gPC to other random variables.
We consider a Beta-type random variable Y of distribution Be(α, β), where
Be(α, β) is the conventional definition of Beta distribution in the domain [0, 1]

f(y) =
1

B(α + 1, β + 1)
yα(1 − y)β, α, β > −1, 0 ≤ y ≤ 1. (57)
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Here B(·, ·) denotes the Beta function. Let α = 1 and β = 0, then the PDF
of Y is

f(y) = 2y. (58)

Since the uniform random variable used in Legendre-chaos is defined in the
domain [−1, 1], we introduce a new random variable X defined in [−1, 1] with
the transformation Y = 1

2
X + 1

2
. Thus, the PDF of X is

f(x) =
1 + x

2
. (59)

Let us assume that the random space [−1, 1] of X is separated into N equal
elements [a, b]. In each element we define a new random variable Xi, i =
1, 2, · · · , N with a corresponding PDF

fi(xi) =
1

∫
[a,b] f(t)dt

1 + xi

2
=

1 + xi

(1 + a/2 + b/2)(b − a)
. (60)

Subsequently, we use a uniform random variable τ to express Xi. A transfor-
mation of variables in probability space shows that

1

2
dτ = fi(xi)dxi = dF (xi), (61)

where F is the distribution function of Xi. Thus, we can obtain

1 + τ

2
= F (xi). (62)

After inverting the above equation, we obtain

xi = F−1(
1 + τ

2
) =

√
(1 + a/2 + b/2)(b − a)(1 + τ) + (1 + a)2 − 1. (63)

Then Xi can be expressed by Legendre-chaos as

Xi =
p∑

j=1

xi,jΦj(τ) (64)

with

xi,j =
1〈
Φ2

j

〉
∫

[−1,1]
F−1(

1 + τ

2
)Φj(τ)

1

2
dτ. (65)

Now each Xi has been approximated by a uniform random variable τ ; thus, we
can implement ME-gPC in each element when solving a stochastic differential
equation with random inputs related to X. Here, we only check the accuracy
of µ2(X) = E[X2]. We compute µ2(X) using equation (36). In Fig. 18, we
show the error of µ2(X) in terms of the element number N . It is seen that an
algebraic convergence with index −4 is obtained, which means that the error

28



is proportional to N−4. This specific value is dictated by the accuracy of the
mapping that we performed and can be improved if higher accuracy is desired.
Therefore, the decomposition of random space can also be used to approximate
a general random variable in order to improve accuracy. Furthermore, we can
use a low-order Legendre-chaos when implementing ME-gPC in each random
element.
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Fig. 18. Error of µ2(κ) for a Beta distribution.

5 Summary

We have extended the generalized polynomial chaos (gPC) framework, first
presented in [4,5], to a multi-element formulation (ME-gPC). The new ap-
proach can maintain a desired accuracy by adaptively decomposing the ran-
dom space of random inputs when a simple criterion is satisfied. Correspond-
ingly, the efficiency and especially the effectiveness of gPC is significantly
improved.

To investigate the performance of ME-gPC we present several examples in-
cluding stochastic algebraic, ordinary and partial differential equations. In
particular, we address errors in long-time integration and in discontinuities in
random space. An example with one-dimensional ODE shows that ME-gPC
can achieve h − p type of convergence. The error of long-term integration is
efficiently controlled by the criterion we developed for the adaptive decom-
position of random space. Subsequently, we explain why gPC fails for the
classical Kraichnan-Orszag three-mode problem, and study it with ME-gPC
for different random inputs. The results indicate that ME-gPC can capture
accurately the discontinuity by the decomposition of random space. In partic-
ular, the adaptive criterion can be used to select the most sensitive random
dimension, and thus make the decomposition of random space more efficient.
A two-dimensional advection-diffusion equation is also simulated by ME-gPC.
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The results suggest that ME-gPC could also improve the efficiency of gPC for
stochastic PDEs. More results for stochastic problems of incompressible flow
using the ME-gPC method presented here are included in [12]. Finally, we
approximate a random variable of Beta distribution by Legendre-Chaos, thus
demonstrating how to deal with general non-uniform random inputs.

ME-gPC is efficient for stochastic systems, which contain no or small subdo-
mains of discontinuities, such as the 1D ODE model and the Kraichnan-Orszag
problem with 1D or 2D random inputs. However, its efficiency is reduced
significantly by the rapidly increasing number of random elements for prob-
lems with high-dimensional random inputs and large discontinuities, as in the
Kraichnan-Orszag problem with 3D random inputs. Such problems require
new approaches in constructing appropriate low-dimensional approximations,
as in the work of [16,17].
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